Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Pharmacol Res ; 180: 106246, 2022 06.
Article in English | MEDLINE | ID: covidwho-2258937

ABSTRACT

Uncontrolled inflammation and failure to resolve the inflammatory response are crucial factors involved in the progress of inflammatory diseases. Current therapeutic strategies aimed at controlling excessive inflammation are effective in some cases, though they may be accompanied by severe side effects, such as immunosuppression. Phytochemicals as a therapeutic alternative can have a fundamental impact on the different stages of inflammation and its resolution. Biochanin A (BCA) is an isoflavone known for its wide range of pharmacological properties, especially its marked anti-inflammatory effects. Recent studies have provided evidence of BCA's abilities to activate events essential for resolving inflammation. In this review, we summarize the most recent findings from pre-clinical studies of the pharmacological effects of BCA on the complex signaling network associated with the onset and resolution of inflammation and BCA's potential protective functionality in several models of inflammatory diseases, such as arthritis, pulmonary disease, neuroinflammation, and metabolic disease.


Subject(s)
Genistein , Isoflavones , Genistein/pharmacology , Genistein/therapeutic use , Humans , Inflammation/drug therapy , Phytochemicals/pharmacology , Phytotherapy
2.
Molecules ; 27(3)2022 Jan 21.
Article in English | MEDLINE | ID: covidwho-1686894

ABSTRACT

The Valparaiso region in Chile was decreed a zone affected by catastrophe in 2019 as a consequence of one of the driest seasons of the last 50 years. In this study, three varieties ('Alfa-INIA', 'California-INIA', and one landrace, 'Local Navidad') of kabuli-type chickpea seeds produced in 2018 (control) and 2019 (climate-related catastrophe, hereafter named water stress) were evaluated for their grain yield. Furthermore, the flavonoid profile of both free and esterified phenolic extracts was determined using liquid chromatography-mass spectrometry, and the concentration of the main flavonoid, biochanin A, was determined using liquid chromatography with diode array detection. The grain yield was decreased by up to 25 times in 2019. The concentration of biochanin A was up to 3.2 times higher in samples from the second season (water stress). This study demonstrates that water stress induces biosynthesis of biochanin A. However, positive changes in the biochanin A concentration are overshadowed by negative changes in the grain yield. Therefore, water stress, which may be worsened by climate change in the upcoming years, may jeopardize both the production of chickpeas and the supply of biochanin A, a bioactive compound that can be used to produce dietary supplements and/or nutraceuticals.


Subject(s)
Cicer/chemistry , Cicer/metabolism , Dehydration/metabolism , Chile , Chromatography, Liquid , Cicer/growth & development , Climate Change/economics , Edible Grain/growth & development , Edible Grain/metabolism , Flavonoids/metabolism , Mass Spectrometry , Phenols/analysis , Seeds/chemistry
3.
Bioengineered ; 12(2): 12461-12469, 2021 12.
Article in English | MEDLINE | ID: covidwho-1585255

ABSTRACT

Severe mortality due to the COVID-19 pandemic resulted from the lack of effective treatment. Although COVID-19 vaccines are available, their side effects have become a challenge for clinical use in patients with chronic diseases, especially cancer patients. In the current report, we applied network pharmacology and systematic bioinformatics to explore the use of biochanin A in patients with colorectal cancer (CRC) and COVID-19 infection. Using the network pharmacology approach, we identified two clusters of genes involved in immune response (IL1A, IL2, and IL6R) and cell proliferation (CCND1, PPARG, and EGFR) mediated by biochanin A in CRC/COVID-19 condition. The functional analysis of these two gene clusters further illustrated the effects of biochanin A on interleukin-6 production and cytokine-cytokine receptor interaction in CRC/COVID-19 pathology. In addition, pathway analysis demonstrated the control of PI3K-Akt and JAK-STAT signaling pathways by biochanin A in the treatment of CRC/COVID-19. The findings of this study provide a therapeutic option for combination therapy against COVID-19 infection in CRC patients.


Subject(s)
Anticarcinogenic Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Colorectal Neoplasms/drug therapy , Gene Expression Regulation, Neoplastic/drug effects , Genistein/therapeutic use , Phytoestrogens/therapeutic use , Atlases as Topic , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/virology , Cyclin D1/genetics , Cyclin D1/immunology , ErbB Receptors/genetics , ErbB Receptors/immunology , Humans , Interleukin-1alpha/genetics , Interleukin-1alpha/immunology , Interleukin-2/genetics , Interleukin-2/immunology , Janus Kinases/genetics , Janus Kinases/immunology , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Molecular Targeted Therapy/methods , Multigene Family , Network Pharmacology/methods , PPAR gamma/genetics , PPAR gamma/immunology , Pharmacogenetics/methods , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/immunology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/immunology , SARS-CoV-2/drug effects , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , STAT Transcription Factors/genetics , STAT Transcription Factors/immunology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL